32 research outputs found

    Single-Sensor Solution to Tree Species Classification Using Multispectral Airborne Laser Scanning

    Get PDF
    This paper investigated the potential of multispectral airborne laser scanning (ALS) data for individual tree detection and tree species classification. The aim was to develop a single-sensor solution for forest mapping that is capable of providing species-specific information, required for forest management and planning purposes. Experiments were conducted using 1903 ground measured trees from 22 sample plots and multispectral ALS data, acquired with an Optech Titan scanner over a boreal forest, mainly consisting of Scots pine (Pinus Sylvestris), Norway spruce (Picea Abies), and birch (Betula sp.), in southern Finland. ALS-features used as predictors for tree species were extracted from segmented tree objects and used in random forest classification. Different combinations of features, including point cloud features, and intensity features of single and multiple channels, were tested. Among the field-measured trees, 61.3% were correctly detected. The best overall accuracy (OA) of tree species classification achieved for correctly-detected trees was 85.9% (Kappa = 0.75), using a point cloud and single-channel intensity features combination, which was not significantly different from the ones that were obtained either using all features (OA = 85.6%, Kappa = 0.75), or single-channel intensity features alone (OA = 85.4%, Kappa = 0.75). Point cloud features alone achieved the lowest accuracy, with an OA of 76.0%. Field-measured trees were also divided into four categories. An examination of the classification accuracy for four categories of trees showed that isolated and dominant trees can be detected with a detection rate of 91.9%, and classified with a high overall accuracy of 90.5%. The corresponding detection rate and accuracy were 81.5% and 89.8% for a group of trees, 26.4% and 79.1% for trees next to a larger tree, and 7.2% and 53.9% for trees situated under a larger tree, respectively. The results suggest that Channel 2 (1064 nm) contains more information for separating pine, spruce, and birch, followed by channel 1 (1550 nm) and channel 3 (532 nm) with an overall accuracy of 81.9%, 78.3%, and 69.1%, respectively. Our results indicate that the use of multispectral ALS data has great potential to lead to a single-sensor solution for forest mapping.Peer reviewe

    The effect of seasonal variation on automated land cover mapping from multispectral airborne laser scanning data

    Get PDF
    Multispectral airborne laser scanning (MS-ALS) sensors are a new promising source of data for auto-mated mapping methods. Finding an optimal time for data acquisition is important in all mapping applica-tions based on remotely sensed datasets. In this study, three MS-ALS datasets acquired at different times of the growing season were compared for automated land cover mapping and road detection in a suburban area. In addition, changes in the intensity were studied. An object-based random forest classi-fication was carried out using reference points. The overall accuracy of the land cover classification was 93.9% (May dataset), 96.4% (June) and 95.9% (August). The use of the May dataset acquired under leafless conditions resulted in more complete roads than the other datasets acquired when trees were in leaf. It was concluded that all datasets used in the study are applicable for suburban land cover map-ping, however small differences in accuracies between land cover classes exist

    Use of Naturally Available Reference Targets to Calibrate Airborne Laser Scanning Intensity Data

    Get PDF
    We have studied the possibility of calibrating airborne laser scanning (ALS) intensity data, using land targets typically available in urban areas. For this purpose, a test area around Espoonlahti Harbor, Espoo, Finland, for which a long time series of ALS campaigns is available, was selected. Different target samples (beach sand, concrete, asphalt, different types of gravel) were collected and measured in the laboratory. Using tarps, which have certain backscattering properties, the natural samples were calibrated and studied, taking into account the atmospheric effect, incidence angle and flying height. Using data from different flights and altitudes, a time series for the natural samples was generated. Studying the stability of the samples, we could obtain information on the most ideal types of natural targets for ALS radiometric calibration. Using the selected natural samples as reference, the ALS points of typical land targets were calibrated again and examined. Results showed the need for more accurate ground reference data, before using natural samples in ALS intensity data calibration. Also, the NIR camera-based field system was used for collecting ground reference data. This system proved to be a good means for collecting in situ reference data, especially for targets with inhomogeneous surface reflection properties

    A Long-Term Terrestrial Laser Scanning Measurement Station to Continuously Monitor Structural and Phenological Dynamics of Boreal Forest Canopy

    Get PDF
    The terrestrial laser scanner (TLS) has become standard technology for vegetation dynamics monitoring. TLS time series have significant underlying application in investigating structural development and dynamics on a daily and seasonal scale. However, the high potential of TLS for the monitoring of long-term temporal phenomena in fully grown trees with high spatial and temporal resolution has not yet been fully explored. Automated TLS platforms for long-term data collection and monitoring of forest dynamics are rare; and long-term TLS time series data is not yet readily available to potential end-user, such as forestry researchers and plant biologists. This work presents an automated and permanent TLS measurement station that collects high frequency and high spatial resolution TLS time series, aiming to monitor short- and long-term phenological changes at a boreal forestry field station (0.006â—¦ angular resolution, one scan per hour). The measurement station is the first of its kind considering the scope, accuracy, and length of the time series it produces. The TLS measurement station provides a unique dataset to monitor the 3D physical structure of a boreal forest, enabling new insights into forest dynamics. For instance, the information collected by the TLS station can be used to accurately detect structural changes in tree crowns surrounding the station. These changes and their timing can be linked with the phenological state of plants, such as the start of leaf-out during spring growing season. As the first results of this novel station, we present time series data products collected with the station and what detailed information it provides about the phenological changes in the test site during the leaf sprout in spring

    Toward utilizing multitemporal multispectral airborne laser scanning, Sentinel-2, and mobile laser scanning in map updating

    Get PDF
    The rapid development of remote sensing technologies pro-vides interesting possibilities for the further development of nationwide mapping procedures that are currently based mainly on passive aerial images. In particular, we assume that there is a large undiscovered potential in multitemporal airborne laser scanning (ALS) for topographic mapping. In this study, automated change detection from multitemporal multispectral ALS data was tested for the first time. The results showed that direct comparisons between height and intensity data from different dates reveal even small chang-es related to the development of a suburban area. A major challenge in future work is to link the changes with objects that are interesting in map production. In order to effectively utilize multisource remotely sensed data in mapping in the future, we also investigated the potential of satellite images and ground-based data to complement multispectral ALS. A method for continuous change monitoring from a time series of Sentinel-2 satellite images was developed and tested. Finally, a high-density point cloud was acquired with terres-trial mobile laser scanning and automatically classified into four classes. The results were compared with the ALS data, and the possible roles of the different data sources in a fu-ture map updating process were discussed

    A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants from Terrestrial Laser Scanning Time Series

    Get PDF
    Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset

    A Clustering Framework for Monitoring Circadian Rhythm in Structural Dynamics in Plants From Terrestrial Laser Scanning Time Series

    Get PDF
    Terrestrial Laser Scanning (TLS) can be used to monitor plant dynamics with a frequency of several times per hour and with sub-centimeter accuracy, regardless of external lighting conditions. TLS point cloud time series measured at short intervals produce large quantities of data requiring fast processing techniques. These must be robust to the noise inherent in point clouds. This study presents a general framework for monitoring circadian rhythm in plant movements from TLS time series. Framework performance was evaluated using TLS time series collected from two Norway maples (Acer platanoides) and a control target, a lamppost. The results showed that the processing framework presented can capture a plant's circadian rhythm in crown and branches down to a spatial resolution of 1 cm. The largest movements in both Norway maples were observed before sunrise and at their crowns' outer edges. The individual cluster movements were up to 0.17 m (99th percentile) for the taller Norway maple and up to 0.11 m (99th percentile) for the smaller tree from their initial positions before sunset

    Tree Classification with Fused Mobile Laser Scanning and Hyperspectral Data

    Get PDF
    Mobile Laser Scanning data were collected simultaneously with hyperspectral data using the Finnish Geodetic Institute Sensei system. The data were tested for tree species classification. The test area was an urban garden in the City of Espoo, Finland. Point clouds representing 168 individual tree specimens of 23 tree species were determined manually. The classification of the trees was done using first only the spatial data from point clouds, then with only the spectral data obtained with a spectrometer, and finally with the combined spatial and hyperspectral data from both sensors. Two classification tests were performed: the separation of coniferous and deciduous trees, and the identification of individual tree species. All determined tree specimens were used in distinguishing coniferous and deciduous trees. A subset of 133 trees and 10 tree species was used in the tree species classification. The best classification results for the fused data were 95.8% for the separation of the coniferous and deciduous classes. The best overall tree species classification succeeded with 83.5% accuracy for the best tested fused data feature combination. The respective results for paired structural features derived from the laser point cloud were 90.5% for the separation of the coniferous and deciduous classes and 65.4% for the species classification. Classification accuracies with paired hyperspectral reflectance value data were 90.5% for the separation of coniferous and deciduous classes and 62.4% for different species. The results are among the first of their kind and they show that mobile collected fused data outperformed single-sensor data in both classification tests and by a significant margin
    corecore